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Unusual synthesis of dihydropyrido[2,1-a]isoindolone derivatives
by radical cyclization of enamides of Baylis–Hillman adducts
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Abstract—During the radical cyclization of enamide derivatives 4 we found unusual formation of dihydropyrido[2,1-a]isoindolone
derivatives 5. The enamides were synthesized in four steps from the Baylis–Hillman adducts of ortho-bromobenzaldehydes.
� 2007 Elsevier Ltd. All rights reserved.
Recently a variety of chemical transformations using the
Baylis–Hillman adducts have been investigated exten-
sively.1 Especially the usefulness of the Baylis–Hillman
adducts for the synthesis of many heterocyclic com-
pounds is noteworthy.1 Radical cyclizations involving
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the Baylis–Hillman adducts have also been examined
by us and other research groups.2

Radical cyclizations of enamide derivatives have been
reported for the synthesis of many heterocyclic
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Figure 1. ORTEP drawing of compound 5a.

Table 1. Synthesis of dihydropyrido[2,1-a]isoindolone derivatives

Entry Enamide 4 (% yield) Product 5 (% yield)
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compounds3 including isoindolobenzazepines,3a,b tetra-
hydroisoquinolines,3c erythrina alkaloids,3d and mappi-
cine ketone Nothapodytine B.3e During the studies
on the chemical transformations of Baylis–Hillman
adducts2 we were interested in the synthesis of eight-
membered cyclic compounds (vide infra) via the radical
cyclization reaction of enamide derivatives derived from
Baylis–Hillman adducts.

The required enamide 4a was synthesized from the
Baylis–Hillman adduct of 2-bromobenzaldehyde 1a
by following the sequential reactions: (1) acetylation of
1a with Ac2O in the presence of DMAP (96%), (2) SN20

reaction with NaN3 in DMSO (72%), (3) Staudinger
reaction with PPh3 in aq THF to prepare 2a (88%),
and (4) the reaction with 2-acetylbenzoic acid (3a) in
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toluene to synthesize enamide 4a in moderate yield
(Scheme 1).3a With this compound 4a in our hands we
examined the cyclization under typical radical cycliza-
tion reaction conditions using n-Bu3SnH/AIBN in
benzene.4 We obtained tricyclic dihydropyrido[2,1-a]
isoindolone compound 5a in 56% yield, unexpectedly.4,5

We did not observe the other meaningful spots on TLC
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although many intractable spots were found. In order to
check the possibility for the formation of eight-mem-
bered compound 66 or seven-membered compound
7,3a,b we examined the reaction conditions including
reaction temperature and the amount of n-Bu3SnH;
however, we could not detect nor isolate any new com-
pounds in appreciable amounts.

The structure of compound 5a was confirmed by IR, 1H
and 13C NMR, mass, and eventually by its X-ray crys-
tallographic structure (Fig. 1).4,7 Compound 5a might
be produced via the proposed mechanism in Scheme 2.
The intermediate benzylic radical (III) could be gener-
ated from the initially generated aryl radical (I) by suc-
cessive 1,5-hydrogen atom abstraction8 to form the
intermediate (II) and conversion to benzylic radical
(III). It is interesting to note that the aryl radical (I)
has allylic protons at 1,5-position thus translocation of
aryl radical to the more stable allyl radical (II) occurred
easily. Radical cyclization of this benzylic radical (III) in
a 6-endo-trig manner and the hydrogen atom abstraction
from n-Bu3SnH furnished 5a.

We examined the generality of this reaction by using
enamides 4b–e and we obtained the expected tricyclic
compounds 5b–e in 46–63% yields (Table 1). As shown
in entries 4 and 5 benzylidene derivatives 4d and 4e
showed similar reactivity to produce 5d and 5e, respec-
tively. However, we did not obtain 5a from the reaction
of chloro derivative 4f. Instead we isolated the reduction
compound 8 in 58% yield (Scheme 3).9

In summary, we disclosed the synthesis of dihydro-
pyrido[2,1-a]isoindolone derivatives from the radical
cyclization reaction of enamide derivatives, which were
synthesized in 4 steps from the Baylis–Hillman adducts
of ortho-bromobenzaldehydes.
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